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ABSTRACT. After more than a century, Hilbert’s sixth problem of physics 
axiomatization is still unsolved. Recent attempts of producing a comprehensive 
“Theory of Everything’’, like string theory, has very little chance of obtaining 
experimental confirmation, and Gödel’s incompleteness theorem seems to 
prohibit a single cohesive axiomatic system, while at the same time nature 
appears unique and unified. New approaches may be needed to help advance 
towards a solution of Hilbert’s sixth problem. In this paper several axiomat‑
ization methods are compared and a systematic research program for solving 
Hilbert’s sixth problem is introduced. A methodology for identifying physical 
principles is presented as well.
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I. WHY AXIOMATIZE PHYSICS?
Is axiomatization a useless “goldplate the carburettor’’ activity 

which it will not make the car run any better as Irving Segal put it? 
Why should we not wait first for a final “Theory of Everything’’ (ToE) 
to be certain we have the correct theory? Gödel incompleteness theo‑
rem2 showed that there is no hope axiomatizing mathematics. Why 
would physics be any different?

Those are all good questions with hopefully equally good an‑
swers. Axiomatizing physics is not a useless exercise because we 
need to answer why some mathematical structures are distinguished 
1 Committee for Philosophy and the Sciences, University of Maryland, College Park, 

MD 20742.
2 K. Gödel, “Üeber formal unentscheidbare Sätxe der Principia Mathematica und verwan‑

dter Systeme I”, Monatshefte für Mathematik und Physik 12, XXXVIII, 1931.
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by nature like: SO(3,1), U(1), SU(2), SU(3). We also need to know 
how those structures can be combined in a coherent structure. We 
can certainly wait for the ultimate ToE, but maybe we can help get us 
there faster, and some encouraging results were already obtained. In‑
deed, mathematics cannot be axiomatized, but nature appears to be 
unique and unified and if the standard axiomatization approach is 
forbidden by the incompleteness theorem, then alternative methods 
need to be investigated.

II. APPROACHES TO AXIOMATIZATION
Several proven approaches to axiomatization are already avail‑

able. First and foremost, there is the standard approach of defining 
axioms and deriving mathematical theorems. But this is only one of 
the choices available. In physics, some theories are introduced as a 
consequence of a principle of nature and this looks to be similar with 
the standard approach of picking up postulates and deriving conse‑
quences. But it will be shown later that this kind of approach is fun‑
damentally different. Then, there is the Bourbaki approach of starting 
simple and building up complexity. Other approaches like category 
theory are available as well but they will not be discussed.

A. Standard axiomatization approach
The standard approach started with Euclidean geometry: define 

axioms and then prove theorems. The value of the resulting system is 
given by the value of the axioms and coming up with the right axioms 
is a very hard problem. It is not every day that a new axiom is pro‑
posed, and the process is not constructive. In fact, it requires a high 
degree of creativity and “cleverness’’. There is nothing wrong with be‑
ing smart, but this does not make a workable systematic research pro‑
gram. Typical motivations for axioms are examples from nature, mo‑
ment of inspiration, agreement with experiments. For example the 
old quantum mechanics was axiomatized early on by von Neumann 
and some of his axioms were later found incorrect for the infinite di‑
mensional case.

There is another aspect of the standard approach which is usually 
overlooked. Picking axioms resembles fencing an area. The axioms of 
the standard method have an intrinsic boundary direction: they point 
inward towards the consequences, and the mathematical theorems 
form a “white box’’, a “what you see is what you get’’ structure. How‑
ever, this is not the only way of building a theory. Let us analyze how 
designers and engineers build things. Or let us look at how a person 
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does a mundane task: buying a car. When you buy a car you do not 
start with metallurgical and chemical axioms, you have requirements: 
colours x, y, and z are acceptable, price to be in this range, the car has 
to have this many seats, etc. Then from the available choices you fil‑
ter out what does not correspond to your needs. Similarly, in engi‑
neering, one starts with requirements as well and then picks from the 
available structures and methodologies the best design for the job. 
But what does this have to do with axiomatization? Axiomatization 
includes the process of defining a boundary between the theory and 
the outside world of mathematics. And this boundary could be point‑
ing inward, or outward. If axioms are pointing inward, requirements 
are nothing but an outward looking boundary which do not derive 
internal mathematical consequences but reject what does not fit from 
an existing pool of structures.

B. Principle axiomatization approach
We can now introduce a new way of physics axiomatization, the 

axiomatization using physical principles. The best examples of this 
approach are special and general relativity. In special relativity Ein‑
stein starts with two postulates, or “requirements of nature’’: principle 
of relativity, and the constant speed of light. The theory is then con‑
structed by removing what does not satisfy those requirements and 
keeping what does. For example the old fashion Galilean transforma‑
tion is rejected by the constant speed of light requirement. Similarly 
in general relativity one starts with the equivalence principle between 
inertial and gravitational mass.

Axiomatizing by physical principles is an outward looking pro‑
cess which rejects the overwhelming number of mathematical struc‑
tures, and accepts a few structures compatible with the physical 
principle. This process results in a “black box’’ where the selected 
structures are not necessarily unified or have any cohesiveness. In 
practice one augments the principles with mild technical axioms to 
arrive at the desired outcome. For example in the special relativity 
case one additional technical axiom is the linearity of the coordinate 
transformations.

To be able to successfully axiomatized physics in this approach 
one needs to have strong physical intuition, but the process is much 
simpler than the standard approach. Being easier, it is also not com‑
plete. In general this approach answers only why some mathemat‑
ical structures are selected by nature, not how can those selected 
mathematical structure fit each other coherently. So why is Lorentz 
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transformation a distinguished mathematical structure selected by 
nature? Because the speed of light is constant. Why is the speed of 
light constant? This is a physics requirement and a methodology for 
selecting core physics requirements will be presented later.

Now not everything seems to be able to be put in this axiomat‑
ization form, and people tried for long time to axiomatize quantum 
mechanics in this fashion, but the very definition of what quantum 
mechanics is seems very elusive. An approach to axiomatizing quan‑
tum mechanics in this fashion is presented in the appendix.

Suppose now we have all the nature requirements in front of us 
and they demand the existence of quantum mechanics and gravity. 
Constructing a coherent theory of quantum gravity is a very hard 
project and answering why it is clearly not enough. We need an ap‑
proach for a coherent unification of disjoined mathematical struc‑
tures, in other words we need to answer how.

Fortunately there is such an approach already available for us, it 
is the Bourbaki approach.

C. The Bourbaki axiomatization approach
Nicolas Bourbaki is a collective name of a group of French math‑

ematicians who proceeded to systematically build mathematics start‑
ing from set theory and adding complexity gradually. This helped 
usher in the modern view of mathematics: mathematics is only about 
relationships, devoid of any ontological meanings. Take for example 
the case of imaginary numbers. For more than three hundred years 
people had serious difficulty to accept what we now take for granted. 
Even the very name “imaginary’’ is a relic of the history behind it. 
How can you take the square root of a negative numbers? Do imagi‑
nary numbers really exist? They are defined by something impossible 
so why should we take them seriously? What finally made the case for 
complex and imaginary numbers was their two by two matrix repre‑
sentation which has no objectionable ontological status: 
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The lesson learned from this simple example is that there are sev‑
eral realizations of the same mathematical structure and makes no 
sense to attach any ontological meaning to any of them. This sug‑
gests then the following axiomatization process: extract all essential 
characteristics of a domain and then do a systematic search for the 
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actual realization of the ontological‑neutral relationships contained in 
those essential characteristics. This process is free of guesswork, and 
straightforward making it ideal to tackle hard physics axiomatization 
problems. Using this process, Emile Grgin pioneered the beginning of 
the axiomatization process for quantum mechanics as a principle ap‑
proach followed by a systematic search for concrete realizations3.

III. COMPARING THE AXIOMATIZATION APPROACHES
We now have all the required puzzle pieces to axiomatization ap‑

proaches and can proceed towards introducing a systematic research 
program towards physic axiomatization. First we need to distinguish 
between axioms and requirements. They form the boundary between 
one mathematical area and the rest of the infinite world of mathemat‑
ics. But they are inward looking deriving mathematical consequences, 
or outward looking eliminating most of the infinite world of math‑
ematics. In physics, requirements are usually named postulates and 
they are justified by experimental results. For the same theory, axioms 
and requirements are usually not the same. For example special the‑
ory of relativity can be constructed from the requirements of relativity 
and constant speed of light, or from the axiom of the Minkowski met‑
ric tensor of the usual (3,1) – signature.

Obtaining the axioms of nature is an extremely hard project be‑
cause it is hard to guess right and subsequent development can find 
exceptions. On the other hand obtaining the requirements is much 
simpler because it requires only physical intuition and agreement 
with experiments. There are effective theories like quantum field the‑
ory which has only a limited range of applicability due to the exis‑
tence of the so‑called Landau pole, but once the range of validity is 
specified, the requirements do not change with the natural develop‑
ment of the theory.

As an inward looking boundary, axioms lead mathematicians 
to desire generalizations, while as an outward looking boundary, re‑
quirements make physicists to seek uniqueness. For the mathemati‑
cian, generalizations are “an escape from Egypt’’, but for a physicist 
generalizations are a “banishment Paradise’’.

Gödel’s incompleteness theorem may prevent the existence of 
an ultimate ToE in closed standard axiomatic form, but this result 
has no relevance for the much more lax requirements/principle ap‑
proach where the final selected mathematical structures may not be 

3 E. Grgin, The Algebra of Quantions, Authorhouse, Indiana, 2005.
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unified. The requirement approach only answer why some mathemat‑
ical structures are used by nature, but we also need to answer how are 
the selected structure coexist harmoniously.

To solve the how problem, any additional axiomatization ap‑
proach will do, but the Bourbaki approach was selected because it 
was successfully employed into the beginning of solving the axiomat‑
ization of quantum mechanics as a principle approach, a long sought 
after physics goal. In this approach one first boils down the essential 
characteristics to bare minimum, and then proceeds at constructing a 
systematic search for concrete realizations. The first part is achieved 
through the requirements/principle approach, while the second part is 
a straightforward systematic search free of guesswork.

IV. SEARCHING FOR THE REQUIERMENTS OF NATURE
There is one more key element for the research project to be vi‑

able. We need physics intuition to start the why phase. It is hard to 
come up with new physics principle such as the constant of the speed 
of light because experimentalist already accumulated a large body 
of knowledge and no stone was left unturned within the current ex‑
perimental abilities. But we can set our sights much higher and we 
can play a Lego exercise: “Let’s build a universe”. In other words, we 
can pretend to be God for a second. First, what building blocks do 
I have at my disposal? This is easy: the timeless mathematical struc‑
tures of the Platonic world of mathematics. And indeed, Wigner fa‑
mously said: “the unreasonable effectiveness of mathematics’’4. Barring 
supernatural explanations, reality is only made up of mathematical 
relationships. So it must be that reality is nothing but math organized 
differently, not unlike liquid water and ice are made up of the same 
chemical molecule.

If the Platonic world of mathematics and Nature are basically the 
same thing organized differently, the natural thing to do is to com‑
pare them: “Identify all mathematical properties of the physical world 
that are universally valid in the real world and are not universally valid 
in the abstract world of mathematics’’5.

So far three principles satisfy this criterion. Two of them were 
originally discovered as part of unrelated research programs, but 

4 E. P. Wigner, “The unreasonable effectiveness of mathematics in the natural sciences. Ri‑
chard Courant lecture in mathematical sciences delivered at New York University, May 
11, 1959”, Communications in Pure and Applied Mathematics, vol.13, 1, 1960.

5 F. Moldoveanu, Heuristic rule for constructing physics axiomatization, arXiv: 1001.4586v1
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it makes sense to introduce them together from the requirements 
point of view.

In the abstract world of mathematics, truth is a property con‑
fined to an axiomatic system. Moreover, an axiomatic system cannot 
define its truth property itself. But as God I want to create an ontol‑
ogy, a reality whose truth value is freed from the axiomatic boundary 
and it is universal. It is this universality which allowed the Galilean 
revolution to occur and put experiments at the centre of settling ques‑
tions about nature. Hence the first principle is: universal truth prop‑
erty, or universal non‑contextuality of the truth value of facts of na‑
ture6. Because of this, we usually have two meanings of truth: true as 
a logical consequence, or true as something corresponding to reality.

Looking again at the abstract world of mathematics, and specifi‑
cally at Gödel’s incompleteness theorem we see that in here things 
are not unified, but separated and “frozen’’. This is not what we want. 
The requirement would be to have a cohesive nature with no “island 
universe’’ following different natural laws. The second principle is the 
“composability principle’’: any two physical systems obeying physical 
laws obey the same law when combined into the same system7. This 
principle is actually extremely powerful as very few mathematical 
structures can obey it. In fact there are only three: classical mechan‑
ics, quantum mechanics, and all Lie groups.

In any axiomatic system, the algorithmic information content is 
finite. The last requirement for nature is to obey a principle of infinite 
complexity. In its original form this principle was called the “deform‑
ability” principle8.

In summary, the three principles/requirements of nature coming 
from comparing nature with the abstract world of mathematics are: 
universal truth property, composability, infinite complexity. The 
rest of solving Hilbert’s sixth problem is deriving mathematical con‑
sequences out of them in a systematic way.

This research program is already in progress with many encour‑
aging results, but it is only in its early infancy. For example, with the 
help of some technical axioms, it can be shown that the first principle 

6 Ibidem.
7 E. Grgin and A. Petersen, “Algebraic Implications of Composability of Physical System”, 

Communications in Pure and Applied Mathematics, vol. 50, nr. 177, 1976.
8 J. Rau, “On the Metric Structure of Space‑Time”, in M.A. del Olmo, M. Santander, and 

J. Mateos Guilarte eds., Group Theoretical Methods in Physics, Vol. II, Proc. XIX Int. 
Colloquium, Salamanca, Spain, June 29‑July 4, 1992 (Anales de Fisica, Monografias 1, 
CIEMAT, Madrid, 1993), pp. 483–486.
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demands the existence of causality and time, the second principle de‑
mands quantum mechanics, and the third principle demands the ex‑
istence of a Riemann metric tensor. Combining the first and third 
principle demands special theory of relativity with an unspecified 
number of spatial dimensions. Combining special relativity and quan‑
tum mechanics can only be consistently done in a 3+1 spacetime as 
shown by the systematic search for realizations for quantum mechan‑
ics in the algebraic formalism. Electroweak gauge symmetry can also 
be obtained as a necessity to unify relativity and quantum mechanics. 
The mid‑term goal is to eliminate as much as possible the additional 
technical axioms and strengthen the results obtained so far.

The major challenge on this framework is the explanation for the 
beginning of time, the existence of a multiverse, and quantum grav‑
ity. The fact that nature is unique as a consequence of physics princi‑
ples is a double edge sword. As Guth put it, why is this universe hap‑
pening only once? This seems to be at great odds with the Copernican 
ideas that we are in no way special.

We may need to look beyond the three principles/requirements and 
it looks that the best approach to solve the issues above it is using the 
Darwinian principle of the survival of the fittest: proving there is a vac‑
uum and demanding its stability from a sea of all potential multiverses 
which do not respect universal truth property or maybe composability. 
At this time those are only speculations, and there are a lot of tractable 
standard problems to be solved in the outlined research project.

Solving Hilbert’s sixth problem will not change the Galilean na‑
ture of physics and experiments will remain the way of testing agree‑
ment with nature. This is because the three principles have to pass 
all past, present, and future experimental tests. We only pretended 
to play God, we cannot write the equations of nature on paper, say 
“fly’’ and a new universe will be born. We can construct virtual re‑
alities on computers but they do not satisfy the third principle, infi‑
nite complexity. Alternative ontologies like computer games, virtual 
reality, even cartoon characters have no less right to exist than our 
universe, there is no ontological hierarchy and the lack of a criterion 
to rank ontologies means that we have we have an ontological de‑
mocracy. The question “why there is something rather than nothing’’ 
has a simple answer: because it can be. In any ontological universe 
there is a simple test for the existence of a creator: is the information 
conserved or not? If no, the “laws of nature” in that universe, are not 
complete and require an outside entity. In other words, God can exist 
only as “God of the gaps’’.
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V. CONCLUSION
A research project aimed at solving Hilbert sixth problem is in‑

troduced. This research projects distinguishes between inward look‑
ing axioms and outward looking requirements/principles. It aims at 
explaining both why some mathematical structures play a key role 
in nature, and how they can be combined in a coherent structure. 
Three principles of nature: universal truth property, composability, 
and infinite complexity were presented. Those principles were orig‑
inally introduced by different motivations and they already gener‑
ated mathematical consequences. The problems of beginning of time, 
uniqueness of our universe, or quantum gravity are not part of this 
framework and new ideas needs to be introduced like Darwinian sur‑
vival of the fittest and Copernican ideas of not being special. How‑
ever, unlike the prior three principles, no mathematical consequences 
were yet derived out of those principles, and their usefulness is only 
speculative at this point. (There are very good reasons to select the 
additional Copernican and Darwinian principles. For example Dar‑
winian survival of the fittest can explain the emergence of classical re‑
ality from quantum mechanics9. The Copernican principle seems to 
imply the existence of a multiverse which is compatible with string 
and inflation theory.)

The strongest principle so far is the composability principle 
which can be used to define quantum mechanics as shown in the ap‑
pendix. The problem is not completely solved, as this principle allows 
additional mathematical structures and the search for additional cri‑
teria to isolate only quantum mechanics continues.

VI. APPENDIX: CONSEQUENCES OF THE 
COMPOSABILITY PRINCIPLE
In this section a high level introduction into using the compos‑

ability principle to define quantum mechanics is given. Quantum 
mechanics can be introduced in many formalisms, but the preferred 
approach is that of Hamiltonian mechanics and of the C* algebraic 
approach. This summary follows the core results of Emile Grgin10 
who introduced the concept of a two‑algebra approach to quantum 
mechanics.

Historically, the idea was to search for a common axiomatization 
of both classical and quantum mechanics because whatever they have 

9 W. H. Zurek, Quantum Darwinism, arXiv: 0903.5082v1
10 E. Grgin and A. Petersen, ibidem.
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in common must be absolutely essential. Both classical and quantum 
mechanics have two products, one symmetric and one anti‑symmet‑
ric. For classical mechanics the two products are the regular func‑
tion multiplication and the Poisson bracket. For quantum mechan‑
ics, the products are the Jordan and the Lie products. There is a one to 
one correspondence between them, usually called the dynamic cor‑
respondence between observables and generators. Mathematically 
this corresponds to a multiplication by 1−  mapping hermitean into 
anti‑hermitean operators, and physically this corresponds to the un‑
certainty principle.

Let us call S1 and A1 the symmetric and the anti‑symmetric prod‑
ucts of system one, S2 and ST the correspondent products of system 
two, and ST and AT the products of the composed system. Compos‑
ability demands the following: 

 2121 AAaSSST ⊗⋅−⊗=   (2)
 2121 SAASAT ⊗+⊗=   (3)

with a = +1, 0,  –1. Then a = +1 corresponds to quantum mechan‑
ics (a = ħ), and a = 0 corresponds to classical mechanics, and a = –1 
corresponds to either a split‑complex quantum mechanics or all Lie 
groups. The symmetric and anti‑symmetric products also obey three 
identities: Lie, Leibniz, and associated identity mapping commutators 
to anti commutators. This formalism is nothing but the C* algebraic 
formalism without the norm positivity condition. From here one can 
determine their concrete realizations resulting in the usual unitary 
groups, and also in some additional exceptional cases like SO(2, 4) 
corresponding to the conformal compactification of SO(1, 3) leading 
to the Dirac’s equation and the electroweak symmetry U(1) × SU(2)11. 
Those are advanced topics beyond the scope of this paper.

11 E. Grgin, Structural Unification of Quantum Mechanics and Relativity, Authorhouse, India‑
na, 2007.
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