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ABSTRACT:  

Using formal means for developing scientific theories became a tradition from the times of Aristotle’s 

Analytics. Ernst Schröder built the complete algebraic theory of inferences by the end of the 19th century. The 

idea of a complete formalization emerged as a way for eliminating paradoxes in foundations of mathematics that 

Bertrand Russell has revealed at the very start of the 20th century. Bertrand Russell and Alfred North 

Whitehead developed the first completely formalized theory in the three volumes of Principia Mathematica (1910 

- 1913). David Hilbert enhanced the formation of metatheoretical approach to axiomatic theories by his call for 

proving the consistency of mathematics by using only finitary means. All of a sudden, in this atmosphere of 

steady axiomatic studies, a young mathematical genius Kurt Gödel published his famous theorem, which proved 

the incompleteness of a formal arithmetic system. Gödel’s theorem raised a huge wave of metatheoretical studies 

of formal systems. His main instrument, called Gödel’s numbering, was a special type of self-referential 

expressions that caused paradoxes just in foundations of mathematics. An aspect of Gödel's approach, that may 

raise discussions, is the formalization of metalogic itself, which actually may eliminate the idea of metatheory.  
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1. Introduction 

At present days of logical science, two main areas of research can be distinguished – 

research on the theory of proof in the framework of mathematical logic and development of the 

methodology and logic of scientific research. The foundations of the first direction were laid by 

Aristotle’s two Analytics. Eventually, the theory of proof was crowned with Gödel’s famous 

theorem on formalized theories (Gödel 1931). This history took about 24 centuries and raised a 

huge wave of publications on different aspects of formalized theories (Kleene 1952, Goldstein 

2006, Smith 2007, Raatikainen 2022). 

Aristotle’s theory of deductive inferences, syllogisms in terms of Aristotle, is presented in 

Prior Analytics. The core of the theory is developed in the first seven chapters of book one of Prior 

Analytics by revealing all valid modes of inferences from two propositions having a subject-

predicate structure. All the remaining 95 % text of the Prior Analytics is about inferences 

containing modalities and false premises. 

Aristotle’s syllogistics is considered a perfect theory in the sense that it presents the proofs 

for all valid inferences from any two types of categorical (subject-predicate) propositions 

(judgments). Aristotelian strict proofs of valid modii make the impression that his syllogistic theory 
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is an example of absolute truth of the same level as that of Euclid’s geometry. The great critic of 

dogmatic theories, Immanuel Kant, had the highest opinion of the Aristotle’s logical theory: 

“formal logic was not able to advance a single step (since Aristotle) and is thus to all appearance a 

closed and complete body of doctrine” (Kant, 2004, p. VIII). 

Yet, under the apparent influence of mathematical sciences, in particular, of algebraic 

equations, there was formed a strong belief that syllogistic inferences can be performed in algebraic 

manner. Gottfried Leibniz dreamed creating a calculus ratiocinator that would make all arguments 

“as tangible as those of the Mathematicians, so that we can find our error at a glance, and when 

there are disputes among persons, we can simply say: Let us calculate” (Wiener, 1951). Valuable 

attempts in this direction made George Boole in his The Laws of Thought (1854) and Stanley 

Jevons in his book The Principles of Science (1879). The algebraic approach to the theory of 

inferences and proof got its perfect and detailed formulation in the three volumes of Ernst 

Schröder’s Vorlesungen über die Algebra der Logik (Lectures on the Algebra of Logic) (Schröder 

1890-1905).  

By the end of the 19th century and the first two decades of the 20th century a new system of 

symbolic logic emerged, nowadays considered as the dominant theory of inferences – the 

mathematical logic. This new direction was generated by research in the field of the foundations of 

mathematics. The pioneer here can be considered Gottlob Frege, who published in 1879 the book 

Begriffsschrift (Terms writing, i.e. calculus of concepts). The system of symbolic designation of 

inferences in Begriffsschrift was so unsuccessful that this work of Frege did not receive due 

attention. However, the system developed by Giuseppe Peano played a significant role in the 

formation of the symbolic language of mathematical logic (Kennedy, 1980). Anyway, the fate of 

Frege's two-volume work Grundgesetze der Arithmetik (1893/1903), devoted to the substantiation 

of number theory, turned out to be more successful. Frege’s approach was copied in Bertrand 

Russell’s Principles of Mathematics (1903) and developed further in three voluminous volumes of 

Principia Mathematica by Russell and his former university teacher Alfred North Whitehead (vol. 1 

– in 1910, vol.2 – in 1912, vol. 3 – in 1913). Further events unfolded around the concept of 

formalization of axiomatic theories, set out in the famous article by the young mathematician Kurt 

Gödel (1931). But before we get into Gödel's concept of formalization, we need to be clear about 

the notion of formal theory.  

As shown in the history of science (of mathematics), the first step towards the formalization 

of a theory is the introduction of letters and symbols to describe objects and formulate the 

statements of the theory. The central moment of the theoretical representation of the doctrine is the 

axiomatic representation of the theory. In the axiomatic representation of the theory, the basic 

statements of the theory (axioms) and all statements derived from them and the corresponding 

definitions using the rules of inference (legitimate inference schemes) are considered true. 

The crown of scientific knowledge is the proof. Scientific research is an incessant search for 

proving the truth of an important statement for the answer to the problem under study. In this 

aspect, the axiomatic construction of the theory has a fundamental advantage. Opponents of the 

theory need to be able to present a fact that refutes any of the axioms or is inconsistent with any 

definition. This task is very difficult, because authors of theories, putting forward their axioms and 

definitions, had considered all significant facts. 

By the end of the 19th century, research began on the axiomatic construction of the most 

basic mathematical teachings – set theory and number theory. And suddenly, like a bolt from the 

blue, paradoxes were discovered in the very foundations of mathematics. As a natural reaction, the 

idea of a more rigorous formulation of axiomatic theories appeared, and then the concepts of formal 

and formalized theories became widespread. 
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2. Aristotle’s formal logic 

Aristotle (384–322 BCE) created a significant number of fundamental sciences of ancient 

times like Logic, Psychology, Physics, Philosophy, Rhetoric, Cosmology, and many others. The 

logical works of Aristotle – Categories, On Interpretation, Prior Analytics, Posterior Analytics, 

Topics, On Sophistical Refutations – later were called Organon meaning "instrument, tool, organ" 

of cognition. Actually, Analytics contain the Aristotelian theory of logical proof: Prior Analytics 

presenting the theory of syllogistic inferences, while Posterior Analytics – the general concept of 

proof, including the Aristotle’s teaching of definition.  

Aristotle was very scrupulous in presenting the teachings and views of his predecessors. He 

called colleagues to sum up what is known by this point to be able adding a new result to this 

heritage. Yet, in regard to the science of logic, Aristotle emphasized his priority. He pointed out that 

when he was developing the science of inferences “it is not true to say that present it had already 

been partly elaborated and partly not; nay, it did not exist at all …regarding reasoning we had 

absolutely no earlier work to quote but were for a long time labouring at tentative researches” (On 

sophistical refutations 155; 34, 183b, 184a).  

The striking thing about Aristotle's Analytics is that there is not a single case known in the 

history of science when a theoretical concept was created without predecessors, as if from scratch, 

and yet was created as complete perfection. There were three factors that could facilitate the 

creation of Analytics. First, there was a certain atmosphere of analysis and research in the Socratic 

dialogues with great skill presented in the writings of Plato. The Armenian ancient philosopher 

David Anhacht (David Invincible, 6th century CE) pointed out in his Commentary on Aristotle's 

Prior Analytics that Plato did not need Aristotle’s theory of proof but rather Aristotle took from 

Plato’s works the seeds of his logical teaching (Tophchian, 2010, ch.4). One could be surprised by 

David Anhacht’s remark since Plato had not written any work dealing with problems of logic in 

general or the theory of proof in particular. David Anhacht’s words should not be taken literally. 

The main idea of his remark is contained in the term “seeds”. True, there are no elements of logical 

theory in Plato’s works. But his dialogs are full of rational discussions and attempts to find out 

definitions of various concepts. 

The second factor could be the appearance of sophists, before and during Aristotle’s time. 

They composed a new social group of citizens able to teach youngsters in a wide range of subjects, 

with particular emphasis on skill in public debates. Due to everyday educational practice with 

young people, sophists eventually created rationalistic climate of thought on questions about 

morality, religion, and politics. So that by the days of Aristotle and the sophists, the “collective 

intellect” of the nation has risen to such a level of strength that a Greek individual felt himself able 

to solve any problem (e.g. Aristotle) and prove any statement be it true or false (the sophists).  

From the days of Aristotle’s Metaphysics, there was quite a satisfactory understanding of the 

essence of scientific knowledge. Scientific knowledge, in contrast to the opinions of people, had to 

have strict proof. By the 4th century BCE the deliberations on the reliability of sensual data and 

rational judgments brought to the formation of the school of philosophical Skepticism. The main 

statement of Pyrrhonist skepticism asserted that knowledge of things is impossible. Skeptics have 

maintained for several centuries an ideological confrontation with dogmatism presented by the very 

influential philosophical school of Stoics. Yet this criticism of the positions of opponents had a very 

specific feature: neither the Academics nor the Stoics had a more or less satisfactory conception of 

truth. Both disputing camps did not use the fundamental definition of the truth, suggested in 

Aristotle’s books on the first philosophy, and continued their confrontation even not mentioning 

Aristotle’s valuable conception of scientific knowledge.  

Compared to Skeptics, ancient sophists presented the opposite pole that reflected the unique 

degree of intellectual development when human mind first succeeded in proving own opinions. 
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Should not they think that they were really wise, or sophoi in old Greek? Especially, if we would 

consider that sophists were ready to teach Athenian youngsters becoming wise as were they 

themselves. But sophists demanded payments for their lessons for which they were criticized in 

Socratic dialogues. Aristotle wrote a special work – Sophistical refutations – where he revealed the 

ways by which sophists pretended being able to prove true and false statements equally.  

3. Algebra of logic and Mathematical logic 

The system of reasoning created by Aristotle from two categorical judgments was 

considered as perfect that for more than two millennia, from the 4th century BCE and until the 

beginning of the 17th century, the theory of categorical syllogism existed without significant losses 

and gains. But already from the middle of the 17th century, the idea of an algebraic representation of 

the theory of inference was born. Many attempts in this direction were made by Gottfried Leibniz 

and his followers Johann Lambert, Julius Plücker and others. Interesting results in the algebraic 

representation of inferences were obtained in the middle of the 19th century by George Boole, 

Augustus de Morgan and Stanley Jevons. By the end of the 19th century, the system of algebraic 

inference theory was exhaustively presented in Ernst Schröder's three-volume work Vorlesungen 

uber Die Algebra der Logik (Schröder, 1890-1905).  

From the point of view of the history studies in foundations of mathematics, the paradox of 

the set of all “normal” sets, discovered by Bertrand Russell in 1903, is considered the first and most 

significant paradox. From the point of view of common sense, specific objects and their sets belong 

to completely different “worlds”, as if they were opposite to each other. The set of books is not a 

book. Objects are separate entities, while sets consider their collections (groups). These two 

heterogeneous types of concepts are connected using the concept of property. Usually, a set is 

defined as a collection of objects that have a given property. In the case of the set of books, this 

unifying property is that of having pages. At the same time, it is considered natural that the 

attraction of a certain property for the formation of a set implies the formation of something new, 

different from the objects themselves, the elements of the set. A set of books can form a library - a 

new object with its own socially significant functions.  

In the light of the said, posing the question of a set that can be its own element is something 

unexpected and strange. Indeed, are there such “anomalous” sets that they themselves are their own 

elements? Which set-forming property can ensure that the resulting set has this same property? The 

question is not easy, and requires accurate deliberations. Namely, this “anomalous” characteristic 

feature should be a property that would in a hidden form designate both a certain set of available 

objects and the property itself. In the field of research in the foundations of mathematics, such a set 

is “the set of all sets”. Since it is the set of all sets, it will also include itself as its element. At the 

same time, there is nothing problematic in the concept of “the set of all sets”. There is no paradox, 

hence, there is no problem.  

It was B. Russell who pointed out that already a derivation from the concept “the set of all 

sets”, namely, the concept of “the set of all normal sets”, generates a paradox, a logical 

contradiction. To reveal the paradox, we divide all sets into normal sets (not containing itself as an 

element) and anomalous sets (containing itself as an element). Now it is easy to show that the set N 

of all normal sets is paradoxical.  

If N is a normal set, then it must satisfy the condition of not being a member of itself and 

thus it is not the set of all normal sets, which is in contradiction with its definition. 

If N is not a normal set (is an anomalous set), it must be a member of itself by definition. 

But the set N of all normal sets is composed of only normal sets and as such cannot be a member of 

itself, which is a contradiction too.  

Thus, we came to a paradox – in the both possible cases we have a logical contradiction 

(compare Irvine & Deutsch 2021). 
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It is quite natural that for several decades' attempts to resolve Russell's paradox were carried 

out within the framework of the problems and categories of mathematics, in particular, the set 

theory. Indeed, as it is clear from the review article on Russell's paradox in the Stanford 

Encyclopedia of Philosophy (Irvine & Deutsch 2021), by that time, mathematicians were not 

inclined to see a connection between paradoxes in the foundations of mathematics and classical 

paradoxes, primarily with the Liar paradox. Russell himself saw the solution to the paradox of the 

set of all normal sets in his "type theory", according to which the formation of a set of sets 

(predicates from predicates) should be limited. On this way of eliminating specific contradictions, 

the mathematicians Zermelo, Frenkel, Skolem, Neumann already in the first decades of the last 

century built axiomatic set theories, free from contradictions like that of Russell's paradox. 

However, such a partial solution of the problem for many mathematicians did not seem to be 

satisfactory. Generation after generation, mathematicians found it natural to build theories for all 

times, in the likeness of Euclid's geometry. Quite in the spirit of this need, the famous 

mathematician of the last century, David Hilbert, put forward the idea of proving the consistency of 

mathematics using only convincing, finitary means. This would free all mathematicians from the 

uncomfortable feeling that a new paradox might arise again in some area of mathematical 

knowledge. 

Another significant result of research on the foundations of mathematics and the 

construction of axiomatic theories has been the increased attention to the rigor of the language of 

mathematical theories. As a result, an ever-increasing tradition has emerged for constructing 

formalized theories and studying their properties such as completeness and decidability in the frame 

of non-formal metamathematics (metalogic).  

 

4. Gödel’s theorem under scrutiny 

Gödel’s incompleteness theorem (formed by two related theorems published in the same 

article in 1931) of the formalized arithmetic (Peano Arithmetic) had a major impact on the modern 

researchers in mathematics, logic and philosophy. Actually, Gödel's 1931 article has determined the 

philosophy and ideology of all subsequent studies on the foundations of mathematics. There arose 

an important wave of publications on the consistency and completeness of formalized systems 

(Smullyan, 1991; Franzén, 2005) and on the philosophical interpretation of Gödel's theorem 

(Rucker, 1995; Wang, 1997; Feferman, 2011). 

By definition, formal (or formalized) theory is said to be consistent if no formal proof can be 

carried in that theory for a formula A and at the same time for its negation ~A. The consistency of 

mathematics became a central problem of studies in foundations of mathematics due to Hilbert’s 

Program. The main idea of this approach was quite simple – to prove mathematics consistency 

using only finite means. Hilbert with his colleagues and some other researchers got certain results 

regarding concrete axiomatic theories of number theory. In contrast to Hilbert's standing, Gödel's 

theorem on the incompleteness of formalized arithmetic proved that Hilbert's program was 

unrealizable: it followed from Gödel's theorem that by means of a given formalized theory it is 

impossible to prove its own consistency (Gödel's second theorem). 

The general idea of Gödel’s proof is quite clear – to build some formula A unresolvable in 

the system of (Peano) formal arithmetic. The problem of resolvability (Entscheidungsproblem) had 

interested mathematicians due to Grundzüge der Theoretischen Logik (Fundamentals of Theoretical 

Logic), published by David Hilbert and Wilhelm Ackermann (1928). According to the definition, if 

A is an unresolvable formula then both A and non-A (the negation of A) are unprovable. (We cannot 

say which of them is true). On the other hand, according to the law of excluded middle we have “A 

or non-A”, one of these two should be true. These means that there is a truth (A or non-A) that is 

unprovable in the system of formal arithmetic. In short, Gödel's theorem proved that the system of 
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that formal arithmetic is incomplete. It showed that formalism is depending on the given axioms of 

the given system, it is not a simple set of deduction/inference rules and by eventually adding new 

axioms the given system is still incomplete. Meaning, the Peano Arithmetic axiomatic system 

is/must be consistent – otherwise it is not useful – but it is not necessarily complete, and one cannot 

demonstrate that it is both consistent and complete, one cannot prove within the PA neither a true 

statement about PA consistency (first theorem) and nor that there is not a statement that asserts both 

A and ~A. 

However, besides the idea and ingenious demonstration of Gödel’s theorems there are some 

aspects which may rise some discussions. 

First, Gödel proved his theorem by constructing in formalized arithmetic some formula G 

that is true but unprovable in Peano Arithmetic/from the axioms of this system, the result being the 

inconsistency of this arithmetic system. And here’s the puzzling detail: when interpreted 

meaningfully, formula G means: “Formula G states that formula G is unprovable”. In the formula 

G only one predicate is used – “provability” – as possible to be formalized in arithmetic. This fact 

unambiguously implies that the formula G belongs to the theory of proof, part of the same 

formalized system, but not of the same arithmetic theory. Thus, considering this aspect, it turns out 

that Gödel’s theorem proves also the incompleteness of Gödel’s formalized proof theory, besides 

that of formalized arithmetic.     

Secondly, Gödel built his system of formalized arithmetic, including his fundamentally 

important formula, with the help of a special numbering invented by him and called Gödel 

numbering. Briefly, the essence of the Gödel numbering is as follows: each predicate, each symbol, 

each formula, and each expression of the formal language of arithmetic is assigned a distinct 

number, due to which the formalized system becomes arithmetized. It was with the help of the 

special numbering invented by him that Gödel was able to construct his formula G, which asserts its 

unprovability. Expressions that state something about themselves are called self-referential. Very 

close to Gödel’s self-referential formula is the well-known from antiquity paradoxical formulation 

"The proposition L states that the proposition L is false" (the Liar's paradox). The paradoxical 

statement L generates a contradiction – both the statement L and its negation ~L turn out to be 

provable. Moreover, since the middle of the last century, mathematicians have recognized that all 

the paradoxes identified in the foundations of mathematics arise precisely because of the self-

referentiality of the expressions used. Accordingly, there is a serious possibility of the emergence of 

a new paradox – a paradox at the level of the meta demonstration – generated by Gödel's self-

referential formula. 

Alfred Tarski proved in 1933 a theorem according to which in the first order formal 

arithmetic the concept of truth is not definable using the expressive means that formal arithmetic 

affords. If the formal arithmetic would contain a predicate Tr that in its informal interpretation 

means “to be True” then one could build with the help of Gödel numbering a “liar” paradox type 

formula S ↔ ¬True(g(S)) where g is Gödel’s number of the formula S. The interpretation of the 

formula S in the informal arithmetic means “S says S is false” – an exact expression of the “liar” 

paradox (Tarski, 1983). 

Yet, revealing a “liar” type paradox in the system of Gödel’s arithmetized metalogic, Alfred 

Tarski suggested a very mild conclusion: truth is undefinable in formal languages (Tarski, 1983; 

Hodges, 2018). Actually, Alfred Tarski has revealed that formal theory with arithmetized metalogic 

is contradictory in the sense that one can build in this system a formula that in its informal 

interpretation expresses “liar” paradox S ↔ ¬True(g(S)). According to metalogic approach, 

revealing a paradox in a formal system one should conclude that this formal system is contradictory 

(Baaz et al, 2011; Fereiros, 2008).  

We would like to mention also that even the mild interpretation of Tarski’s theorem as of 

undefinability of the truth in formal systems is essentially damaging the concept of formal 
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(arithmetized) metalogic. Not having the predicate truth in a formal metalogic (it is present only in 

the arithmetic formal systems), one cannot judge either on completeness, or the consistency of a 

formal system. Then what is the use of such a metalogic system?  

What was Gödel’s reaction to the difficulties revealed by Tarski’s theorem? There was no 

single comment on Tarski’s undefinability theorem in any of Gödel’s published articles (Wang, 

1997). 

A. Tarski proved his theorem using Gödel numbering. Until there will be suggested a proof 

for Tarski's undefinability theorem without using Gödel numbering the opponents of self-referential 

sentences would insist that the undefinability of truth is caused by Gödel numbering. 

5. Non-correct definitions as the main source of paradoxes 

The whole problem of consistency, “perfection” of an axiomatic theory nests in its 

definitions. It is enough to use one unfortunate (fraught with paradox) notion in a fundamental 

theory for generating a corresponding paradox and starting panic in this science. For some reason, 

scientists and analysts do not notice that the paradox concerns only this concept and relevant 

judgments, while theory as a whole does not “care” about this paradox. We mean that specialists 

continue to study and develop this theory, being convinced that sooner or later researchers will be 

able to resolve the revealed paradox. For example, Russell himself, who discovered the paradox in 

connection with the concept of the "set of all sets" in 1903, already in 1910 proposed in the first 

volume of the Principia Mathematica a "theory of types" to exclude the possibility of the 

appearance of the said paradox precisely by limiting the applicability of the concept "set of all sets".  

An axiomatic theory is built from three main parts: a small group of initial statements of the 

theory – axioms; a small group of logical rules for deriving consequences from available statements 

(premises); and an unlimited group of definitions of notions formulated as the theory unfolds. 

It is implicitly assumed that axioms are either self-evident or that they have earned their high 

status of a basic statement by the fact that many important statements of the theory are deduced 

with their participation. Yet, let us assume that there is a doubt about certain axiom of a sufficiently 

developed theory as of a potential source of a paradox. But since we are talking about a fairly 

developed theory, the suspected axiom, among other axioms, had multiple cases of use in the 

derivation of new statements of the theory. This means that the defectiveness of the considered 

axiom should have manifested itself many times. The history of sciences demonstrates that theories 

face only single cases of paradoxes. This proves that the axioms of a sufficiently developed theory 

should not be considered as the cause for the appearance of a paradox in this theory.  

It must be borne in mind that the "immunity" of the axioms of proven theories in relation to 

paradoxes does not extend to their resistance to new, previously unknown facts. The appearance of 

principally new facts that contradict this axiom means only the fallacy, and not the internal 

inconsistency of this axiom. The new observational data obtained with the help of telescopes, 

combined with the laws of Newtonian mechanics, refuted the postulate of geocentrism and the 

entire Aristotelian model of the universe. However, the postulate of geocentrism was not self-

contradictory and did not lead to paradoxes. Conversely, the expression "This statement says it is 

false" and similar expressions such as Russell's paradox are self-contradictory and generate 

paradoxes independently of any facts. 

Similarly, rules of logical inferences are also a small group of rules. Since we are 

considering a sufficiently developed axiomatic theory, each of the inference rules has already been 

repeatedly used in the proofs of the theorems of this theory. If some logical rule of inference were 

so defective that it could generate a paradox, then dealing with a highly developed theory and the 

intensely use of its inference rules, many paradoxes should have arisen, while paradoxes in the 

history of scientific theories are single cases only. 
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The axiomatic method of constructing of a theory, namely, especially, the unambiguous 

definition of all the concepts of a given theory, also excludes the possibility of a logical 

contradiction due to the ambiguity of the natural language used. Just the fact of defining each notion 

of an axiomatic theory eliminates the ambiguity of the language used. This means that the criticism 

of the use of natural languages in axiomatic theories is, in fact, pointless. It is the obligatory 

definition of each term (notion) in the axiomatic formulation of the theory that eliminates the very 

possibility of errors and contradictions due to the use of a natural language. 

The situation with paradoxes is not saved by the formalization of the theory, the transition 

from carrying out proofs in natural language to purely formal transformations of the statements of 

the theory, written down as a purely symbolic expression (a sequence of letters and other signs). 

The very procedure of rewriting the meaningful definitions of a non-formal theory into the symbolic 

language of a formalized theory is performed mechanically, following the rules of the given formal 

theory. At the same time, if there is some inadequate (unspecified) definition of a term in the 

original non-formal theory, then this defect of the definition will be accurately reproduced in the 

corresponding symbolic notation of the formalized theory. In this case, a definition is so “bad” that 

in the original non-formal theory it implies a truth value paradox, so the same paradox will reappear 

also in the formalized theory as a provability paradox. 

This means that the formalization of a non-formal axiomatic theory cannot give anything 

positive aimed to securing its consistency. The axioms have to be restated. 

In the case of Gödel's arithmetic formalization, the latter studies of formalized systems 

raised the problem of the means to give useful solutions either in the aspect of eliminating the 

appearance of local paradoxes, or in the aspect of the possibility of proving the consistency of 

mathematical theories. We believe that the lack of content of formalized theories cannot 

significantly damage the development of mathematical sciences, but it can disorientate young 

researchers toward neglecting aspects of definition in the formalization of axioms and theorems.   

 

Conclusions 

The above analysis has revealed three main concepts of formalism: 

A. Formalism as an approach for eliminating paradoxes in foundations of mathematics, 

B. Formalism as a program for consistency proof by vary means, 

C. Formalism as a concept of total arithmetization of a formal theory.  

All of these options were developed in the name of creating an impeccable, “ideal” version 

of the axiomatic theory, but apparently, the axiomatic construction of the theory is not subject to 

further improvement. In the axiomatic theory, problems and paradoxes arise mainly due to the 

unsuccessful, inadequate definition of a notion. 

The first approach presumed that by eliminating natural language from the means of 

scientific research and argumentation will eliminate the very source of paradoxes. Actually, the 

elimination of natural language was carried out by rewriting expressions in natural language into the 

symbolic language of the formalized theory, following its predetermined rules. As shown above, if 

there is some inadequate (disproportionate) definition in the original content theory, then this defect 

will also be reproduced in the corresponding symbolic notation. That is, the formalization of the 

axiomatic theory by the elimination of natural language and symbolization of a theory cannot give 

anything positive in terms of the emergence of contradictions and paradoxes. 

Hilbert’s research program of proving mathematics consistency by finitary methods 

presumes that researchers are able to find out in some way the indicators of any statement provable 

in mathematics, which is completely non-realistic, and Gödel demonstrated this.  

According to Tarski's theorem, in any interpretation of a formal system using the predicate 

“to be true”, we will unavoidably express the liar paradox. But in science it is impossible to 

abandon the truth. Without the truth, there could be no scientific knowledge. Judging about a 
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formalized system by its “purely” formal (arithmetized) meta-logic is an attempt of judging about 

the chains of symbols using the chains of equally meaningless symbols. 
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